A molecular, phylogenetic and functional study of the dADAR mRNA truncated isoform during Drosophila embryonic development reveals an editing-independent function

نویسندگان

  • Sushmita Ghosh
  • Yaqi Wang
  • John A. Cook
  • Lea Chhiba
  • Jack C. Vaughn
چکیده

Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3'-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition. 3'-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 × 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5'-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of new targets of Drosophila pre-mRNA adenosine deaminase.

Adenosine deaminase acting on RNA (ADAR) in Drosophila and mammals has recently become the target of numerous investigations. It is now clear that this protein has a number of functions in the nervous system. Indeed, the mutation of ADAR in Drosophila (dADAR) results in many pathological and physiological changes, such as sensitivity to hypoxia and neuronal degeneration. To understand the full ...

متن کامل

A-to-I Pre-mRNA Editing in Drosophila Is Primarily Involved in Adult Nervous System Function and Integrity

Specific A-to-I RNA editing, like that seen in mammals, has been reported for several Drosophila ion channel genes. Drosophila possesses a candidate editing enzyme, dADAR. Here, we describe dADAR deletion mutants that lack ADAR activity in extracts. Correspondingly, all known Drosophila site-specific RNA editing (25 sites in three ion channel transcripts) is abolished. Adults lacking dADAR are ...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar(5G1) null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective lo...

متن کامل

Novel Putative Nicotinic Acetylcholine Receptor Subunit Genes, D 5, D 6 and D 7, in Drosophila melanogaster Identify a New and Highly Conserved Target of Adenosine Deaminase Acting on RNA-Mediated A-to-I Pre-mRNA Editing

Genome analysis of the fruit fly Drosophila melanogaster reveals three new ligand-gated ion channel subunits with the characteristic YXCC motif found only in -type nicotinic acetylcholine receptor subunits. The subunits are designated D 5, D 6, and D 7. Cloning of the D 5 embryonic cDNAs reveals an atypically large N terminus, part of which is without identifiable sequence motifs and is specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013